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Scale Effect on Principal Component Analysis for
Vector Random Functions'

J. A. Vargas-Guzman,” A. W. Warrick,? and D. E. Myers®

Principal component analysis (PCA) is commonly applied without looking at the “spatial
support” (size and shape, of the samples and the field), and the cross-covariance structure of
the explored attributes. This paper shows that PCA can depend on such spatial features. If the
spatial random functions for attributes correspond to largely dissimilar variograms and cross-
variograms, the scale effect will increase as well. On the other hand, under conditions of
proportional shape of the variograms and cross-variograms (i.e., intrinsic coregionalization),
no scale effect may occur. The theoretical analysis leads to eigenvalue and eigenvector functions
of the size of the domain and sample supports. We termed this analysis “‘growing scale PCA,”
where spatial (or time) scale refers to the size and shape of the domain and samples. An example
of silt, sand, and clay attributes for a second-order stationary vector random function shows
the correlation matrix asymptotically approaches constants at two or three times the largest
range of the spherical variogram used in the nested model. This is contrary to the common
belief that the correlation structure between attributes become constant at the range value. Results
of growing scale PCA illustrate the rotation of the orthogonal space of the eigenvectors as the
size of the domain grows. PCA results are strongly controlled by the multivariate matrix
variogram model. This approach is useful for exploratory data analysis of spatially autocorrel-
ated vector random functions.

KEY WORDS: dispersion covariances, spatial support, Pearson correlation, spatial scales of
variability, PCA, matrix variogram.

INTRODUCTION

Principal component analysis (PCA) is used widely to compute orthogonal
components that are linear combinations of the correlated original variables
(attributes). PCA is related to R-mode factor analysis when performed for
the attributes (e.g., soil features). Principal component analysis may be
computed from the covariance matrix or from the correlation matrix be-
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tween attributes. Results are in general different. Although PCA does not
require any assumptions about autocorrelation or independence between
samples, classic maximum likelihood estimators of covariance and variances
used to compute Pearson correlations assume samples are independent of
each other. It is accepted that in many earth science problems, samples are
spatially autocorrelated (e.g., Journel and Huilbregts, 1978). However,
PCA is used commonly as a data analysis tool without further considera-
tions. The PCA eigenvectors are assumed valid without domain and
sample support considerations. Also, exploration of data some times
need to compare the eigenvector structure from one place to another
without “‘spatial support” restrictions. As we will show later, such a use
of PCA and R-mode factor analysis can be inadequate whether the
coregionalization structure of the vector random function shows non-
intrinsic coregionalization.

In this paper, we analyze the effect of multivariate spatial auto and
cross-dependency on classical PCA computed for attributes that are
spatial realizations of a vector random function. We provide a theoretical
analysis of the effect of autocovariance, cross-covariance, sample supports,
and size of the domain for the PCA results. We called this approach
growing scale PCA. An example is included for completeness to illustrate
the scale effect on PCA performed for real field data.

From Classic PCA Method to Geostatistics

The literature about PCA and factor analysis is extensive. Mardia,
Kent, and Bibby (1979) and Basilevsky (1994) give many references.
Preisendorfer (1988) provides an extensive applied explanation. In recent
years, multivariate geostatistics has used PCA to simplify co-kriging. The
basic idea is to apply PCA to get independent principal components,
then rotate the data to obtain scores that could be kriged separately
avoiding the necessity of modeling the cross-variograms required by co-
kriging. The kriged scores can then be back rotated to the space of the
original variables (Davis and Greenes, 1983). However, the statistically
independent PCA scores are rarely spatially orthogonal. In other words,
the cross-variograms for the PCA scores are not zero for all lag distances,
and the idea of kriging the PCA scores as an alternative to co-kriging
becomes limited.

From early works in geostatistics, it is known that the variogram of
a random function can be decomposed by nested structures. Wackernagel
(1985) explains the factorial kriging method which applies PCA to each
multivariate nested structure separately. See also Sandjivy (1984). Thus,
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PCA techniques have been incorporated in geostatistics or more directly
in variogram modeling and factorial kriging. In the above, there is no
mention of the effect of autocorrelation, size and geometry of the domain,
and sample supports into the classic PCA for a finite physical domain.

The Classic PCA Method

Principal component analysis transforms a correlated set of attributes
into an orthogonal set. The starting hypothesis is that the geometry of the
problem allows the existence of orthogonal directions of variability E in
the space of attributes. A data set is defined as a n X p matrix Z of n
samples and p attributes. Also, a n X p matrix Y of independent scores is
defined. For simplicity, sample data Z are assumed to be centered (i.e.,
mean zero). Then,

Y=ZE )

and conversely
Z=YE" 2)
The matrix Eisap X p orthonormal, so that E™! can be replaced by E”. Thus,
E'E=EE’' =1 3)
For each possible new basis there exists a diagonal variance matrix L* of

Y given by

LZ=%(YTY)=diag[ll,. L= L,=0 4)

where n must be a large number of samples to obtain an unbiased estimator.
Equivalently, U? is the estimated covariance matrix for Z:

U= ’%(ZTZ) 5)
Total invariant variance is given by
p P
trace U= > u; = D I, (6)
=1 j=1
where u; are diagonal terms of U2
Also,
nU? =Z"Z = (YE")" YE” = E Y'YE’ (7)

and
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L, = E'U’E (8)

L? is maximized when E is the matrix of eigenvectors Q, and L? the
diagonal matrix of eigenvalues A of the positive definite matrix U2

Special care should be taken when applying PCA rotation. Note that
when data are standardized (i.e., mean zero and variance 1), the covariance
matrix U? is the correlation matrix between attributes, otherwise U? is the
covariance matrix. Matrices Q obtained from the two cases are not the
same. If standardized data z are used, eigenvectors obtained from the
correlation matrices may be scaled by the square roots of the eigenvalues
[A]"2 to get the factors of R-mode factor analysis

A =Q[A]"” )
Factors can be used for computation of nonstandardized scores. Then,
Y=2zA=7ZQ
In general, use the eigenvectors to rotate the covariance matrix.
UU=Q2AQ'=AAT (10)
and
Z=YQ’ (11)

The order of the rows of data in Z does not affect the results. PCA
as just described does not take account of the physical location of the
samples. Neither does it account for the size of the domain or terrain where
the samples came from. Also, it does not consider whether samples are
autocorrelated and have different supports (i.e., size and shape of the
samples). Note the difference with Q-mode factor analysis where the matrix
of similarity is made between samples. In practice, R-mode factor analysis
is applied without restrictions to autocorrelated data when Q-mode is also
applied to the same data. We show that the results of PCA and therefore
R-mode factor analysis can be scale dependent if samples are autocorrelated
and cross-correlated.

Multivariate Coregionalization

From the classic early works in geostatistics (e.g., Journel & Huijbregts,
1978), the multivariate matrix variogram for p attributes can be considered
as a nested structure of g independent random functions

T, () = 3. % () (12)

u=1
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where I'z(h) is the multivariate matrix variogram for the original random
function and I'4« () are the g nested structures (i.e., Journel and Huijbregts,
1978). The linear model of coregionalization is

_ q
I'z(h) = 21 Big" (h) (13)
b%l b%p ‘lil ‘lip
b%l bip b§1 bgp
Ti(h) = : g )+t : g'(h)  (14)
[ b e Bl LR

The coregionalization matrices B* can be used to compute regionalized
correlations for each spatial scale of variability (Wackernagel 1985, 1995).

bt
r Y
iy
Vbib

These coefficients have the disadvantage that they depend on the structures
utilized for modeling the multivariate variogram. Different modelers may
derive different nested structures and therefore different regionalized corre-
lations. Goulard and Voltz (1992), Myers (1994), and Xie and Myers (1995)
provide tools for modeling multivariate variograms. Wackernagel (1985)
explains that coregionalization matrices B* can be diagonalized to give
spatially orthogonal coregionalized factors A* = E* VA where E is a
matrix of eigenvectors and A* a matrix of eigenvalues. Then,

E* BYE" = )" (16)

(15)

A particular case of the linear model of coregionalization is when the
coregionalization matrices are proportional. Then, the intrinsic coregionali-
zation is

q
I,(h)=B 21 b'g"(h) (17)
In this situation, matrix B provides a global set of spatially orthogonal eigen-
vectors.

In the space of the increments, intrinsic coregionalization has long
been recognized as a property of certain multivariate matrix variogram or
autocovariance (Journel and Huijbregts, 1978). These authors have ex-
plained the advantages of the intrinsic coregionalization in the space of
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increments. Under the intrinsic coregionalization model of the variogram,
factors or principal components at each lag distance in the space of the
increments are independent of spatial structure (i.e., unique principal direc-
tions, see also Sandjivy, 1984; Wackernagel, 1985). Because of the lack of
spatial orthogonality of the global scores, Wackernagel (1985) has applied
the linear model of coregionalization to construct orthogonal coregionalized
factors for each nested structure in the multivariate matrix variogram. From
Goovaerts (1993) the cross-variograms for the rotated data show a lack of
spatial orthogonality depending on the nested structures. Then, the com-
puted global PCA principal components are not orthogonal at each lag
distance due to the nonintrinsic coregionalization.

Note that all of the above analyses (already classic) were made in the
space of the increments (i.e., the eigenvectors are computed from the matrix
variogram at each lag distance). In statistics, we wish an analysis in the
average physical space or a region. Therefore, a spatial average analysis is
introduced that could provide information about correlation and PCA
analysis in the average physical space.

THEORY
Multivariate Dispersion Covariance Matrix

We introduced the extension of classic univariate dispersion variance
to the multivariate case (Vargas-Guzman, Warrick, and Myers, 1999). As
a consequence of considering cross-variograms and dispersion (cross) co-
variances, a covariance matrix for p attributes measured in elements of size
v that exactly make up the domain of size V is given by

D’ (v|V) = %jdxffz (x —x")dx' — éfdxffz(x —x)dx"  (18)
Vv v v v’

where I',(h) is the multivariate matrix variogram for a vector spatial random
function Z(x)

[ () y(h) |
yalh) - yph)

TAh) = : (19)
_ypl(h) T Vpp(h)_

and
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[ DL(u|V) -+ Di(u|V)]
Dy(u|V) -+ D3 (u|V)
D*(v|V) = . (20)
| D2IV) - DLlV)

Diagonal entries D3(v|V) are the univariate dispersion variances and the
off-diagonal entries D} (v|V) are the dispersion (cross) covariances between
pairs of attributes (e.g., soil or geological features). The meaning of the
dispersion covariance between two regionalized attributes is the same as
the classic statistical covariance, but it is conditioned to the geometry of v
and V and the governing matrix variogram. Although the term dispersion
cross-covariance could be used, the term dispersion covariances is main-
tained because for an infinite second-order stationary domain and point
sample support D*(v|V) converges to the classic statistical covariance be-
tween attributes. A single dispersion covariance between two attributes i
and j is given by the difference between the average cross-variogram func-
tion within the domain V and within the elements v that exactly make up V'

1 ! ! 1 ! !
D3(v|V) :WJ'vdXJV'%f(X —x')dx' — U_vade'u'yij(x —x')dx
eay)
where y;(h) for i # j is the cross-variogram between i and j.

We also introduced a geostatistically scaled multivariate correlation
matrix,

R(v[V) = (D*(v[V))(85)?)"($5) " (22)

where (S%)'? is a diagonal matrix of dispersion standard deviations con-
structed with the root square of the diagonal terms of the dispersion covari-
ance matrix D*(v|V). Thus, the scaled correlation matrix is

_1 . rlp(v|V)_
721(U|V) tot r2p(U|V)
R(v|V) = : (23)
_rpl(v|V) .. 1 i

These correlations depend on the sample supports, size and shape of the
domain, and the multivariate matrix variogram. Such a correlation matrix
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for a second-order stationary infinite domain converges to the classic multi-
variate correlation matrix of Pearson coefficients for independent samples.
We propose that dispersion covariance matrices and scaled correlation
matrices computed for regionalized variables can be used for PCA. We
term this to be a growing scale PCA. Several advantages can be exploited
by conditioning the results of PCA to the shape and size of the domain
and samples taken. This technique is useful for exploratory data analysis
of spatially auto and cross-correlated data. It includes analysis with samples
at different support and domains of different size. Also, this technique is
useful for multivariate time series where autocorrelation can produce an
effect on the PCA results.

Growing Scale PCA

For a vector random function Z(x), dispersion covariance matrices
such as Eq. (20) can be expressed as continuous variance functions of V
with v constant. For a given size v of the elements or blocks, a matrix of
functions can be obtained by a variable w to describe V:

[ DH(w) -+ Dh(w) ]
Dy(w) -+ D3(w)
DX(w) = . (24)
| Do(w) -+ Dp(w)

In practice w may change quasi-continuously by steps depending on
the support v. For point support, D*(w) is truly continuous. In this case,
D?(w) is a spatial average from the model multivariate matrix variogram
in the region of size w. Therefore, it is a variance estimated from the
ensemble and not only for a particular realization. Now define a new spatial
vector random function within the neighborhood w = W

Y(x([W) ={Yi(x[W),. . .. Va(x[W)} (25)
where x represents the physical location; this leads to
1 (w
o VW) Yl W) dx = (26)
where §; = 0 for j # k and 1 otherwise is a Dirac delta function and A,

the corresponding eigenvalue. Note that the Y;(x|W) functions are uncorre-
lated on the average, but may or may not be spatially orthogonal. The
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representation of Y(x|W) is a vector of score spatial random functions
rotated from the original random functions with the eigenvectors Q and
eigenvalues A obtained for a neighborhood of size W. Then,

Y(x|W) = Z(x) Q 27)

where Z(x) is centered by the mean vector.

Now, instead of taking a single size W, we will allow the size of the
domain to change a differential of size dw. So the size of the domain will
be growing continuously with its shape conserved. The variable or set of
variables that will measure such a growth is w. As will be explained, Q(w)
will be a matrix of functions changing as the size w changes. Then
Y(x, w) from

Y(x, w) = Z(x) Q(w) (28)

is a family of random functions that change as the size of the domain
w changes.

Ou(w) -+ Ou(w)
[Yi(x, w) - - - Yy (o, w)] = [Zi(x) - - - Z,(x)] e (29)
Qvl(w) e Qﬂﬂ(W)

where all elements are functions. Z(x) may be standardized by the stan-
dard deviation.
The matrix of eigenvectors Q(w) is orthonormal for each w. Then,

Q(w) Q'(w) =1 (30)

The eigenvector functions or factor functions can be computed from the
dispersion covariances

Q"(w) DX(w) Q(w) = A(w) (1)

where A(w) is the diagonal matrix of eigenvalue functions. If Q(w) becomes
constant for a certain size of neighborhood, then Q(w) = Q and we can
call A(w) the dispersion covariances of the principal component random
functions for the size of the neighborhood.

In the same way, PCA can be performed from the matrix of correlation
functions for the attributes such as Eq. (23). Such a correlation function is
not the spatial correlation, but it is an average correlation between attributes
or feature variables within a domain of size w when samples are taken at
the size v. Thus, by knowing the correlation functions between attributes
as a function of the size of the domain, a matrix of functions R(w) can be
constructed. Consider again uniform support. Then, we have
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e’(w) R(w) e(w) = Ae(w) (32)

where e(w) and Ax(w) are the eigenvectors and eigenvalue functions for
the size w. R(w) is similar to the dispersion covariance for standardized
data. Note, standardization is not constant because the diagonal matrix
d(w) of standard deviations V D}(w) is a function of the size of the domain.
Therefore, assuming the mean is independent of the size of the domain,

Zstandardhed(x’ W) = (Z(X) - [,L)(d(W))ﬂ (33)

If data are available, a different set of standardized z can be computed for
each size of neighborhood w.

The Linear Model of Coregionalization and Growing Scale PCA

Intrinsic correlation in the average space of the regionalized variables
is a particular case where the classic correlation matrix R between attributes
is independent of the size of the domain and sample supports. Therefore,
a unique numerical matrix of eigenvectors is obtained for any size w.
Under intrinsic correlation, if the covariance matrix is used for PCA, the
eigenvalues grow proportionally to the elementary dispersion variances.
The eigenvectors remain independent of size and shape of the domain and
sample supports. This allows, in some ways, legitimate application of some
techniques designed for independent samples (i.e., classic PCA) to a spa-
tially correlated vector random functions. However, in most of the cases
correlation is nonintrinsic. We have shown that it is wrong, although com-
monly done, simply to ignore the effect of the size and shape of the domain
and sample supports when analyzing results of PCA or R-mode factor
analysis.

For nonintrinsic correlation, dispersion covariances can be calculated
separately for each nested structure u of the multivariate variogram.

1 T ’ ’ 1 Tu ’ ’
D“(v|V) wavdxjv, Iy(x — x") dx —U—QdeL,I‘ «(x —x') dx
(34)
Also, we have
D“(v|V) = B“d"(v|V) (35)

where d“(v|V) is the scalar elementary dispersion variance computed from
the elementary average variogram g“().

1 N ‘ N
d“z(v|V)=ﬁfvdva,g“(x—x)dx —U—ZdeL,g(x—x)dx (36)
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Holding v constant and considering D“*(v|V) as a function of the size w of
the growing domain, the eigenvector property is

Q' (w) D(w) Q'(w) = d(w)[Q"B'Q] = d(w)A"  (37)

In this way, the coregionalized factors (constant) are related to the eigenvec-
tor functions for growing domains.

The total dispersion variance for the elements of support v in the growing
domain is

D2(w) = il D* (w) = il B d°(w) (38)
Then, D*(w) is
D2(w) = 3, d2(w)[ QA Q"] (39)

u=1
and the total eigenvalues matrix is

q

L¥(w) = Q(W)< 1 d”Z(W)[Q”X”Q”T]>(Q(W))T (40)

As can be seen from the equations above, no direct relationship exists
between the eigenvalues and eigenvectors of each nested structure (i.e.,
coregionalized factors) and the global eigenvalues and eigenvectors for a
given w. Rotation is required to make the g spaces parallel (on the original
variables space) and then a sum and a global rotation on the total eigenvec-
tors will produce the L?(w) matrix.

Under the intrinsic correlation

DX(w) = i D2(w) =B i bid(w) (41)
L(w) = Q(w)(i budﬂ(w))B(mw))T (42)

there is a single constant eigenvectors structure computed from matrix B.
This case is not common in practice and the eigenvectors will change
whether the multivariate matrix variogram model is not an intrinsic coregio-
nalization.

Eigenvalues and Dispersion Variances

Eigenvalues computed from dispersion covariance matrices such as
Eq. (25) can be interpreted as dispersion variances when they are functions



712 Vargas-Guzman, Warrick, and Myers

of the size of the domain and sample supports. Then, the L*(w) are disper-
sion variances of a vector random function. Unfortunately, since the princi-
pal components are not constant in most instances (i.e., they are nonintrinsic
independent), L*(w) corresponds to different orthogonal spaces for each
w. This complicates its practical use for computing variograms. However,
we could find cases in practice where the deviation of the eigenvectors from
constant values is very small at least for a local neighborhood. Although the
lack of orthogonality may arise at larger lag distances due to nonintrinsic
correlation caused by different length of range or drift component in each
attribute, still a local stationarity may be sufficient for kriging purposes.
Also, we can consider locally intrinsic correlation as valid for a restricted
neighborhood w depending on how much the experimental eigenvectors
from growing scale PCA depart from constants within w. In such a case,
we postulate computation of variograms from variances. In one dimension,
the method starts by computing a numerically estimated covariance func-
tions from experimental dispersion covariances for point support. Next is
growing scale PCA in a sequence of regularly increasing size of the domain
w, where w is less than or equal to the local neighborhood. The eigenvalues
can be used to construct a numerical representation of a G? function

GY(w) = wrLXw) (43)

Then, the sample variogram for the probable intrinsic principal components
in the neighborhood is

yu() = E2 ) (44)

This approach is justified if sample eigenvectors deviate only slightly or
not at all from constants. However, such vectors are taken from the sample,
which in fact is obtained from a particular realization (i.e., regionalized
random variable) of the random function. Therefore, they may deviate
from the intrinsic correlation even if the ensemble or total vector random
function is intrinsically correlated. In this sense, the question would be: How
much tolerance should be given to the nonconstant sample eigenvectors?
Of course, this question should be answered according to experimental
observations depending on each particular case.

The principal components diagonal matrix variogram can be modeled.
Then, the orthogonal variogram can be used to generate an intrinsic multi-
variate variogram of the original variables restricted to the neighborhood.
Alternatively, the data can be rotated to work in the space of the eigenvec-
tors. This approach may allow kriging of the scores.
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FIELD EXAMPLE

To illustrate a numerical example of growing scale PCA, a typic tor-
rifluvents soil classified as Trix soil series has been utilized. The fields are
called MAC 28-31 located at the Maricopa Agricultural Center of the
University of Arizona (Warrick and others, 1990). For this example, clay,
sand, and silt were chosen, from 16 monitored attributes, because they
guarantee nice PCA results. These attributes have significant linear correla-
tions, close to normal probability distributions, second-order stationarity
and a nice coregionalization model. These textural attributes are commonly
used in soil classification and PCA analysis of soil multivariate systems
including water content and chemical attributes. Note, one of the attributes
can be expressed as a function of the other two; this additional piece of
information is beneficial for our example because it assures the system
of three attributes reduces to two orthogonal factors. Because the three
attributes add to a constant everywhere, the variogram of their sum should
be theoretically zero. Under intrinsic correlation these attributes should
not show scale effects.

A matrix variogram computed for attributes clay, sand, and silt respec-
tively was modeled with the linear model of coregionalization following
Eq. (14)

7098 —7.820 0.721
T(h)=|-7820 8616 —0.794 |g'(h)
0.721 —0.794  0.073

15336 —23.182 8303
+|-23182 36096 —12.928 | g%(h)
8303 —12.928  4.631

1918 —4.086 3281
+| —4.086 20918 —16.797 | g(h)
3281 —16.797  13.489

where the elementary variograms g'(h) = (1 — 8(h)) is nugget with (8(h) =
1if h = 0 and 8(h) = 0 otherwise), g*(h) is spherical of range 150 m with
unit sill, and g3(h) = spherical range 365 m with unit sill. This model has
been checked for closure by considering the variogram of the sum of the
three attributes should be close to zero. This coregionalization model shows
the studied attributes are nonintrinsically correlated. Thus, the scaled corre-
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lation model expressing Eq. (22) as the linear combination of nested random
functions is

1 —0.999 0.9994 |
R(w)=|]| —0999 1 —0.999 W[ we
[ 09994 —0.999 1 1 ]
[[ 1 -0.9853 09853 1"
+1]-09853 1 -1 W' | w!
[ 09853 -1 1 1 ]
[[ 1 —0.645  0.6451 !
+1] —0.645 1 -1 w2 [ w2
[ 06451 -1 1

where the numerical matrices are the regionalized correlation coefficients.
The diagonal matrices W* for each domain V and support v are calcu-
lated from

W = (d(v) v,.)bu)m[i (d(v] Vl-)b“)]“z = 515! (45)

u=1

where the elementary dispersion variances dV*(v|V) and d®*(v|V) for each
spatial scale of variability are computed with Eq. (36) and b* are diagonal
matrices from the major diagonal of the coregionalization matrices. Note
that the high correlations of the nugget component are attributed to the
coregionalization matrix utilized. In some cases, the nugget effect is also
associated to measurement errors. Also note, if the total nested multivariate
matrix variogram is held constant, then changing the involved structures
of spatial components should not change the global scaled correlations.
The scaled correlation model has been plotted for square domains of
side 0 = w = 2000 m and square sample supports {point, 50, 100, and 150}
in Figure 1. Point support has been assumed for samples that are much
smaller than the sampled field. This figure provides abundant information
about the correlation behavior. Note these curves give clear idea about the
scale of spatial cross-correlation too. For point support, the correlation
between two attributes of this soil approaches a constant at two and three
times the largest range (i.e., largest spatial scale of variability) in the nested
model matrix variogram. The asymptotic convergence for large domains
follows from the second order stationarity of the random functions. For
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Correlation r(silt-clay)

Correlation r(silt-sand)

Correlation r(sand-clay)

Figure 1. Correlation from square elements v in a domain of side w.
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larger sample supports, correlation functions tend to be shifted to the right.
The shape of those curves is controlled by the contributions of the spatial
components to dispersion variances present in the W* diagonal matrices
multiplied by the regionalized correlation coefficients.

The correlation function for silt and clay shows a maximum for w close
to 150 m. The shift to the right is because of the averaging within square
domain and sample supports. Note that 150 m also corresponds to the
range of one of the nested structures. The scaled correlation between silt
and sand is a monotonically decreasing function. On the other hand, the
correlation between sand and clay is a monotonically increasing function.
An observation is that, in the three cases, the asymptotic correlation is
decreasing in absolute value as the sample supports increases.

Growing scale PCA computed from the correlation functions of Figure
1 illustrates the scale dependency of the results. Figure 2 illustrates the
eigenvalues as a function of the size of the domain and sample supports.
The first eigenvalue has values higher than one meaning that it absorbs
most of the variability. Recall that these eigenvalues are standardized vari-
ances. As expected, the third eigenvalue in Figure 2 takes very small values
and could be dropped out from the system. For factor analysis, the smaller
eigenvalue is interpreted as noise. However, in this example, it has some
structure. Due to the strong deviation from the intrinsic correlation, the
shapes exhibit a maximum for the first eigenvalue and a minimum for the
second eigenvalue. Both extremes occur around 150 m. The magnitude of
the scale effect depends on each particular vector random function. Such
an effect is more dramatic for attributes having highly different variograms
and cross-variograms.

Figures 3-5 illustrate the matrix of scale dependent eigenvectors. Note
each figure is an eigenvector which has three components. Their locations
in the matrix are given in parenthesis. Figure 3 is the plot for the first
eigenvector or principal component. The three elements of the eigenvector
correspond to the cosine of the angle (correlation) between the eigenvector
and the original variables clay, sand, and silt respectively. For the intrinsic
hypothesis we would get constant values (i.e., horizontal lines), so deviations
from straight lines can be interpreted as rotations. Figures showing eigen-
vectors are strongly influenced by the correlations shown in Figure 1. The
clay component exhibits a monotonically increasing behavior, the sand
component shows a minimum, and the silt component is a monotonically
decreasing function. The absolute values of the three components of the
first eigenvector are similar. However, the first eigenvector has slightly
higher correlation with sand.

Figure 4 shows a principal component that is strongly correlated in
absolute value to clay and silt, but less correlated to sand. This eigenvector
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Eigenvalue L(1)

Eigenvalue L(2)

Eigenvalue L(3)

Figure 2. Eigenvalues computed from the correlation functions
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Eigenvector (component e(1,1))

Eigenvector (component e(2,1))

Eigenvector (component (3, 1))
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Eigenvector (component €(2,2)) Eigenvector (component e (1,2))

Eigenvector (component e(3,2))

Figure 4. Second eigenvector (components for clay, sand, and silt).
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becomes asymptotically scale independent for w larger that 1000 m. This
is of course a consequence of the coregionalization. The three components
are monotonically decreasing functions. The shift to the right due to larger
sample supports is observed for smaller domains.

The third eigenvector is more correlated to sand. The sand component
exhibits a maximum (Figure 5). The clay component exhibits a monotoni-
cally decreasing function. On the other hand, the correlation with silt is an
increasing function.

The three eigenvectors and eigenvalues all exhibit the asymptotic be-
havior due to second order stationarity. In general, larger-scale effect may
result from other attributes corresponding to highly nonproportional vario-
grams and cross-variograms. Cases where samples are taken at different
support may exhibit larger scale effects in correlation and PCA. Note that
anisotropy is also important and case specific.

CONCLUSIONS

Scale-dependent PCA is a consequence of the nonintrinsic coregionali-
zation present in the multivariate matrix variogram. Therefore, performing
PCA for a vector random function should be done cautiously when the
spatial correlation structure is unknown. Exploratory studies using PCA
should consider the spatial autocorrelation existing between the data. Size,
shape of domain, and sample supports can be taken into account by utilizing
dispersion (cross) covariances. This leads to a PCA approach that accounts
for the geometry and spatial correlation of the vector random function.
This approach has been called a “growing scale PCA.” Results of this
technique, applied to correlation matrices of textural soil data, demonstrate
that asymptotic behavior of the PCA results exists under second-order
stationarity. However, for smaller domains the results of PCA can be
strongly scale dependent. In conclusion, PCA and R-mode factor analysis
as traditionally used may be highly limited in earth science studies if are
performed without considering the spatial auto and cross-correlation. Po-
tential exists for using this type of exploratory tool for quantitatively de-
tecting the spatial scales of variability and also for detecting intrinsic correla-
tions for local neighborhoods.
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